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Lecture 6: SVD



Recap

* Any finite-dimensional inner product space has orthonormal basis. Fourier
coefficients, Parseval’s identity. Adjoint of linear transform. Reisz
representation theorem. Self-adjoint linear operators: eigenvalues are real and
eigenvectors corresponding to distinct eigenvalues are orthogonal.

* Real Spectral Theorem: every self-adjoint operator @: V — V for finite-
dimensional V has an orthonormal basis of eigenvectors (i.e., is “orthogonally
diagonalizable”).

* Raleigh quotients: R, (v) = (D, ¢(¥)) where ¥ = v/||v||

* The vector v such that applying @ gives the largest “stretch” in ¥ direction is the
eigenvector of largest eigenvalue, and likewise for the evector of smallest evalue.
(Extension: Courant-Fischer Theorem)

* Positive semidefiniteness (see next slide).



Positive Semidefiniteness (recap)

Definition 3.4 Let ¢ : V — V be a self-adjoint operator. ¢ is said to be positive semidefinite if
Ry(v) > 0forall v # 0. ¢ is said to be positive definite if R,(v) > 0 for all v # 0.

Proposition 3.5 Let ¢ : V. — V be a self-adjoint linear operator. Then the following are equiva-

lent:

Part of argument: if ¢ = a™a then (v, p(v)) =
1. Ry(0) > 0 forall v # 0. (v, a*(a(¥))) = (a(v), a(v)) = 0. This also

means that if v is an eigenvector, its eigenvalue
2. All eigenvalues of ¢ are non-negative. must be non-negative.

3. Thereexists « : V — V such that ¢ = a*w.

The decomposition of a positive semidefinite operator in the form ¢ = a"a is known as
the Cholesky decomposition of the operator. Note that if we can write ¢ as a*a for any
a : 'V — W, then this in fact also shows that ¢ is self-adjoint and positive semidefinite.



Singular Value Decomposition preliminaries

* Consider a linear transformation @:V — W. We can use our previous discussion
to analyze the eigenvectors of ¢*@:V — IV and @@™: W — W, and then use these
to get a nice decomposition of ¢ called Singular Value Decomposition (SVD).

Proposition 1.1 Let ¢ : V. — W be a linear transformation. Then ¢*¢ : V — V and @¢* :
W — W are self-adjoint positive semidefinite linear operators with the same non-zero eigenvalues.

Self-adjointness of @™ (the proof for @™ is analogous):

Using fact that ¢** = ¢

(Wi, 0(0*(W2))) = (@ (wp), @* (W) = (p(p" (W), wy). beelmiZaa

Positive semidefiniteness of @™ (the proof for ¢* ¢ is analogous):

« (w,p(0*W))) = (p* (W), p*(W)) = 0.



Singular Value Decomposition preliminaries

* Consider a linear transformation @:V — W. We can use our previous discussion
to analyze the eigenvectors of ¢*@:V — IV and @@™: W — W, and then use these
to get a nice decomposition of ¢ called Singular Value Decomposition (SVD).

Proposition 1.1 Let ¢ : V. — W be a linear transformation. Then ¢*¢ : V — V and @¢* :
W — W are self-adjoint positive semidefinite linear operators with the same non-zero eigenvalues.

Now just need to show they have the same nonzero eigenvalues:

* Let A > 0 be an eigenvalue of ¢* @ with eigenvector v. So <p*(<p(v)) = Av.

* This implies ¢ (go*(go(v))) = A@(v). Note that ¢(v) can’t be 0 (by T), so ¢(v) is an
eigenvector of @™ of eigenvalue A.



Singular Value Decomposition preliminaries

* Consider a linear transformation @:V — W. We can use our previous discussion
to analyze the eigenvectors of ¢*@:V — IV and @@™: W — W, and then use these
to get a nice decomposition of ¢ called Singular Value Decomposition (SVD).

Proposition 1.1 Let ¢ : V. — W be a linear transformation. Then ¢*¢ : V — V and @¢* :
W — W are self-adjoint positive semidefinite linear operators with the same non-zero eigenvalues.

* This implies ¢ (cp*(go(v))) = A@(v). Note that ¢(v) can’t be 0 (by T), so @(v) is an
eigenvector of @™ of eigenvalue A.

Proposition 1.2 Let v be an eigenvector of ¢* ¢ with eigenvalue A # 0. Then ¢(v) is an eigen-
vector of @™ with eigenvalue A. Similarly, if w is an eigenvector of @* with eigenvalue A # 0,
then @*(w) is an eigenvector of ¢* ¢ with eigenvalue A.



Singular Value Decomposition preliminaries

Proposition 1.2 Let v be an eigenvector of ¢*¢ with eigenvalue A # 0. Then ¢(v) is an eigen-
vector of @™ with eigenvalue A. Similarly, if w is an eigenvector of @¢* with eigenvalue A # 0,
then ¢*(w) is an eigenvector of ¢* @ with eigenvalue A.

Proposition 1.3 Let the subspaces Vy and W) be defined as
Vyi= {veV|¢pw)=A-0} and Wy, := {weW|gpp"(w) =A -w}.

Then for any A # 0, dim(V) ) = dim (W, ).
Proof:

* If dim(V;) = k then we have k orthogonal eigenvectors v, ..., v, of @*¢@ with eigenvalue A.
So, @(v1), ... @ (v}) are eigenvectors of @™ with eigenvalue A. In fact, they’re also orthogonal:

(p(y), o(v))) = (9 (), v;) = (v, v;) = 0. So, dim(W,) = k. And vice versa.



Singular Value Decomposition preliminaries

Proposition 1.2 Let v be an eigenvector of ¢*¢ with eigenvalue A # 0. Then ¢(v) is an eigen-
vector of @™ with eigenvalue A. Similarly, if w is an eigenvector of @¢* with eigenvalue A # 0,
then ¢*(w) is an eigenvector of ¢* @ with eigenvalue A.

Proposition 1.3 Let the subspaces Vy and W) be defined as
Vi = {veV]|g pv)=A-0} and Wy, := {we W |¢pp*(w)=A -w}.

Then for any A # 0, dim(V) ) = dim (W, ).

Using this, we now get...



Singular Value Decomposition

Proposition 1.4 Let 0f > o5 > .-+ > o7 > 0 be the non-zero eigenvalues of ¢*¢, and let
v1,...,0r bea corresponding orthonormal eigenvectors (since @™ @ is self-adjoint, these are a subset
of some orthonormal eigenbasis). For w, . .., w, defined as w; = ¢(v;)/0;, we have that

1. {wy,...,w,} form an orthonormal set.

2. Foralli € |[r]
¢(v;) = 0;-w; and ¢ (w;) = ;- ;.

So, even though @ and ¢™ don’t have eigenvectors (their domain and range are
different — they are arbitrary linear transformations / matrices), the v; and w; are a bit
like eigenvectors. They are called the (right and left) singular vectors, and the o; are
called singular values.



Singular Value Decomposition

2

Proposition 1.4 Let 0f > o5 > --- > o7 > 0 be the non-zero eigenvalues of ¢*¢, and let

v1,...,0r bea corresponding orthonormal eigenvectors (since ¢ @ is self-adjoint, these are a subset
of some orthonormal eigenbasis). For w, . .., w, defined as w; = ¢(v;)/0;, we have that

1. {wy,...,w,} form an orthonormal set.

2. Foralli € |[r]
¢(v;) = 0;-w; and ¢ (w;) = ;- ;.

Proof of (1):

» We already saw orthogonal. Unit length because (¢ (1;), 9 (v;)) = (@* @ (v;),v;) = .



Singular Value Decomposition

2

Proposition 1.4 Let 0f > o5 > --- > o7 > 0 be the non-zero eigenvalues of ¢*¢, and let

v1,...,0r bea corresponding orthonormal eigenvectors (since ¢ @ is self-adjoint, these are a subset
of some orthonormal eigenbasis). For w, . .., w, defined as w; = ¢(v;)/0;, we have that

1. {wy,...,w,} form an orthonormal set.

2. Foralli € |[r]
¢(v;) = 0;-w; and ¢ (w;) = ;- ;.

Proof of (2):

* @(v;) = o;w; by definition.

c (W) = o () /0y) = ofvi/0;= oyv;.



Singular Value Decomposition

2

Proposition 1.4 Let 0f > o5 > .-+ > o7 > 0 be the non-zero eigenvalues of ¢*¢, and let

01, ..., 0 bea corresponding orthonormal eigenvectors (since ¢* ¢ is self-adjoint, these are a subset
of some orthonormal eigenbasis). For wn, ..., wy defined as w; = ¢(v;)/0;, we have that

1. {wy,...,w,} form an orthonormal set.

2. Foralli € [r]
p(vi) = o;-w; and @ (w;) = Ca

L _ T\ —
Matrix view: Av; = o;w; and A" w; = g;7;. 5

* If you view the rows of A as representing m points in n-dimensional space, then
span(v, ..., vy ) will be the “best-fitting” k-dimensional subspace in the sense of
minimizing the sum of squared distances to the subspace.

* Minimizing squared distance is equivalent to maximizing squared projection

* The quantity DT ATAD = (D, AT AD) is the sum of projections along v squared, maximized at v,
because this is the Raleigh quotient.



Singular Value Decomposition

Definition 1.6 Let V, W be inner product spaces and let v € V,w € W be any two vectors. The
outer product of w with v, denoted as |w) (v|, is a linear transformation from V to W such that

lw) (v| (u) = (v,u) w.

Matrix view: This is the rank-1 matrix wv! (as opposed to the inner product w’ v).

« Getwviu =whTu).

Why is wv! rank 1?

* Because all rows are multiples of v’ (and all columns are multiples of w).

We now get...



Singular Value Decomposition

Proposition 1.8 Let V, W be finite dimensional inner product spaces and let ¢ : V — W be a
linear transformation with non-zero singular values o, ..., 0y, right singular vectors vy, ..., v;
and left singular vectors wy, ..., wy. Then,

,,
¢ = ) Ui
=1

r

w;) (vi] - A=) oyw]

=1

This is the Singular Value Decomposition of ¢ (or A).



Singular Value Decomposition

Proposition 1.8 Let V, W be finite dimensional inner product spaces and let ¢ : V — W be a
linear transformation with non-zero singular values o, ..., 0y, right singular vectors vy, ..., v;
and left singular vectors wy, ..., wy. Then,

r

,,
o = Y o-|w) (v . A=zaiwivz
=1

=1

Proof:

First, note that the RHS is a linear transformation, so we just need to show it acts
correctly on basis vectors.

Let’s define a basis: take v, ..., V- and extend arbitrarily to orthonormal basis.

What is RHS applied to v;? Ans: gjw; = @ (v;).

All the rest of the basis vectors are in the null-space. LHS and RHS both evaluate to O.
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