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Recap

• Any finite-dimensional inner product space has orthonormal basis.  Fourier 
coefficients, Parseval’s identity.  Adjoint of linear transform.  Reisz 
representation theorem. Self-adjoint linear operators: eigenvalues are real and 
eigenvectors corresponding to distinct eigenvalues are orthogonal.

• Real Spectral Theorem: every self-adjoint operator 𝜑: 𝑉 → 𝑉 for finite-
dimensional 𝑉 has an orthonormal basis of eigenvectors (i.e., is “orthogonally 
diagonalizable”). 

• Raleigh quotients: 𝑅𝜑 𝑣 = ො𝑣, 𝜑 ො𝑣  where ො𝑣 = 𝑣/ 𝑣   

• The vector 𝑣 such that applying 𝜑 gives the largest “stretch” in ො𝑣 direction is the 
eigenvector of largest eigenvalue, and likewise for the evector of smallest evalue. 
(Extension: Courant-Fischer Theorem)

• Positive semidefiniteness (see next slide).



Positive Semidefiniteness (recap)

Part of argument: if 𝜑 = 𝛼∗𝛼 then 𝑣, 𝜑 𝑣 =
𝑣, 𝛼∗ 𝛼 𝑣 = 𝛼 𝑣 , 𝛼 𝑣 ≥ 0.  This also 

means that if 𝑣 is an eigenvector, its eigenvalue 
must be non-negative.



Singular Value Decomposition preliminaries

• Consider a linear transformation 𝜑: 𝑉 → 𝑊.   We can use our previous discussion 
to analyze the eigenvectors of 𝜑∗𝜑: V → 𝑉 and 𝜑𝜑∗: 𝑊 → 𝑊, and then use these 
to get a nice decomposition of 𝜑 called Singular Value Decomposition (SVD).

Self-adjointness of 𝜑𝜑∗ (the proof for 𝜑∗𝜑 is analogous):

• 𝑤1, 𝜑 𝜑∗ 𝑤2 = 𝜑∗ 𝑤1 , 𝜑∗ 𝑤2 = ⟨𝜑 𝜑∗ 𝑤1 , 𝑤2⟩.

Positive semidefiniteness of 𝜑𝜑∗ (the proof for 𝜑∗𝜑 is analogous):

• 𝑤, 𝜑 𝜑∗ 𝑤 = 𝜑∗ 𝑤 , 𝜑∗ 𝑤 ≥ 0. 

Using fact that 𝜑∗∗ = 𝜑 
(see hwk2 q2)



Singular Value Decomposition preliminaries

• Consider a linear transformation 𝜑: 𝑉 → 𝑊.   We can use our previous discussion 
to analyze the eigenvectors of 𝜑∗𝜑: V → 𝑉 and 𝜑𝜑∗: 𝑊 → 𝑊, and then use these 
to get a nice decomposition of 𝜑 called Singular Value Decomposition (SVD).

Now just need to show they have the same nonzero eigenvalues:

• Let 𝜆 > 0 be an eigenvalue of 𝜑∗𝜑 with eigenvector 𝑣.  So 𝜑∗ 𝜑 𝑣 = 𝜆𝑣.

• This implies 𝜑 𝜑∗ 𝜑 𝑣 = 𝜆𝜑 𝑣 . Note that 𝜑 𝑣  can’t be 0 (by ↑), so 𝜑 𝑣  is an 

eigenvector of 𝜑𝜑∗ of eigenvalue 𝜆.  
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Singular Value Decomposition preliminaries

Proof:

• If dim 𝑉𝜆 = 𝑘 then we have 𝑘 orthogonal eigenvectors 𝑣1, … , 𝑣𝑘 of 𝜑∗𝜑 with eigenvalue 𝜆. 
So, 𝜑 𝑣1 , … 𝜑(𝑣𝑘) are eigenvectors of 𝜑𝜑∗ with eigenvalue 𝜆.  In fact, they’re also orthogonal: 
𝜑 𝑣𝑖 , 𝜑 𝑣𝑗 = 𝜑∗𝜑 𝑣𝑖 , 𝑣𝑗 = 𝜆𝑣𝑖 , 𝑣𝑗 = 0.  So, dim 𝑊𝜆 ≥ 𝑘. And vice versa.



Singular Value Decomposition preliminaries

Using this, we now get…



Singular Value Decomposition

So, even though 𝜑 and 𝜑∗ don’t have eigenvectors (their domain and range are 
different – they are arbitrary linear transformations / matrices), the 𝑣𝑖 and 𝑤𝑖  are a bit 
like eigenvectors.  They are called the (right and left) singular vectors, and the 𝜎𝑖 are 
called singular values.



Singular Value Decomposition

Proof of (1):

• We already saw orthogonal.  Unit length because 𝜑 𝑣𝑖 , 𝜑 𝑣𝑖 = 𝜑∗𝜑 𝑣𝑖 , 𝑣𝑖 = 𝜎𝑖
2.



Singular Value Decomposition

Proof of (2):

• 𝜑 𝑣𝑖 = 𝜎𝑖𝑤𝑖 by definition.

• 𝜑∗ 𝑤𝑖 = 𝜑∗ 𝜑 𝑣𝑖 /𝜎𝑖 = 𝜎𝑖
2𝑣𝑖/𝜎𝑖= 𝜎𝑖𝑣𝑖.



Singular Value Decomposition

Matrix view: 𝐴𝑣𝑖 = 𝜎𝑖𝑤𝑖 and 𝐴𝑇𝑤𝑖 = 𝜎𝑖𝑣𝑖. 

• If you view the rows of 𝐴 as representing 𝑚 points in 𝑛-dimensional space, then 
𝑠𝑝𝑎𝑛 𝑣1, … , 𝑣𝑘  will be the “best-fitting” 𝑘-dimensional subspace in the sense of 
minimizing the sum of squared distances to the subspace. 
• Minimizing squared distance is equivalent to maximizing squared projection

• The quantity ො𝑣𝑇𝐴𝑇𝐴 ො𝑣 = ො𝑣, 𝐴𝑇𝐴 ො𝑣  is the sum of projections along 𝑣 squared, maximized at 𝑣1 
because this is the Raleigh quotient. 

𝒂𝒊



Singular Value Decomposition

Matrix view: This is the rank-1 matrix 𝑤𝑣𝑇 (as opposed to the inner product 𝑤𝑇𝑣).

• Get 𝑤𝑣𝑇𝑢 = 𝑤 𝑣𝑇𝑢 .

Why is 𝑤𝑣𝑇 rank 1?

• Because all rows are multiples of 𝑣𝑇 (and all columns are multiples of 𝑤). 

We now get…



Singular Value Decomposition

𝐴 = ෍

𝑖=1

𝑟

𝜎𝑖  𝑤𝑖𝑣𝑖
𝑇

This is the Singular Value Decomposition of 𝜑 (or 𝐴).



Singular Value Decomposition

𝐴 = ෍

𝑖=1

𝑟

𝜎𝑖  𝑤𝑖𝑣𝑖
𝑇

Proof:

• First, note that the RHS is a linear transformation, so we just need to show it acts 
correctly on basis vectors.

• Let’s define a basis: take 𝑣1, … , 𝑣𝑟 and extend arbitrarily to orthonormal basis.

• What is RHS applied to 𝑣𝑗? Ans: 𝜎𝑗𝑤𝑗 = 𝜑(𝑣𝑗). 

• All the rest of the basis vectors are in the null-space. LHS and RHS both evaluate to 0. 
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